(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
active(isNePal(X)) → isNePal(active(X))
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
isNePal(mark(X)) → mark(isNePal(X))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isNePal(X)) → isNePal(proper(X))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNePal(ok(X)) → ok(isNePal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(__(z0, z1), z2)) → c(__'(z0, __(z1, z2)), __'(z1, z2))
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(and(z0, z1)) → c7(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(__(__(z0, z1), z2)) → c(__'(z0, __(z1, z2)), __'(z1, z2))
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(and(z0, z1)) → c7(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22
(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(and(z0, z1)) → c7(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(and(z0, z1)) → c7(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
K tuples:none
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
We considered the (Usable) Rules:
__(ok(z0), ok(z1)) → ok(__(z0, z1))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
And the Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(and(z0, z1)) → c7(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(AND(x1, x2)) = 0
POL(ISNEPAL(x1)) = 0
POL(PROPER(x1)) = 0
POL(TOP(x1)) = [2]x1
POL(__(x1, x2)) = [2] + [4]x1 + x2
POL(__'(x1, x2)) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = [4]x1 + x2
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c16(x1, x2, x3)) = x1 + x2 + x3
POL(c18(x1, x2, x3)) = x1 + x2 + x3
POL(c20(x1, x2)) = x1 + x2
POL(c21(x1, x2)) = x1 + x2
POL(c22(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(isNePal(x1)) = [4]x1
POL(mark(x1)) = [1] + x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(tt) = [4]
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(and(z0, z1)) → c7(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(and(z0, z1)) → c7(AND(active(z0), z1), ACTIVE(z0))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
and(
z0,
z1)) →
c7(
AND(
active(
z0),
z1),
ACTIVE(
z0)) by
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(and(tt, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(and(tt, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(and(tt, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(and(tt, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c8, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1, c7
(9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c(ACTIVE(and(tt, z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c(ACTIVE(and(tt, z0)))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c8, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1, c7, c
(11) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(isNePal(z0)) → c8(ISNEPAL(active(z0)), ACTIVE(z0))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c8, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1, c7, c, c
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
isNePal(
z0)) →
c8(
ISNEPAL(
active(
z0)),
ACTIVE(
z0)) by
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(and(tt, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(and(tt, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(and(and(tt, z0), x1)) → c
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(and(tt, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1, c7, c, c, c8
(15) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 35 dangling nodes:
ACTIVE(and(and(tt, z0), x1)) → c
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(and(tt, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(and(tt, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(and(tt, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1, c7, c, c8
(17) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ACTIVE(and(tt, z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ACTIVE(and(tt, z0)))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1, c7, c, c8, c2
(19) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(__(z0, z1)) → c16(__'(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c16, c18, c20, c21, c22, c1, c7, c, c8, c2, c2
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
__(
z0,
z1)) →
c16(
__'(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c18, c20, c21, c22, c1, c7, c, c8, c2, c2, c16
(23) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 44 dangling nodes:
ACTIVE(isNePal(and(tt, z0))) → c2
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c18, c20, c21, c22, c1, c7, c, c8, c2, c16
(25) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(and(z0, z1)) → c18(AND(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c18, c20, c21, c22, c1, c7, c, c8, c2, c16, c16
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
and(
z0,
z1)) →
c18(
AND(
proper(
z0),
proper(
z1)),
PROPER(
z0),
PROPER(
z1)) by
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0), PROPER(nil))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0), PROPER(tt))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(nil), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(tt), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c20, c21, c22, c1, c7, c, c8, c2, c16, c16, c18
(29) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
PROPER(isNePal(z0)) → c20(ISNEPAL(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c20, c21, c22, c1, c7, c, c8, c2, c16, c16, c18, c18
(31) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PROPER(
isNePal(
z0)) →
c20(
ISNEPAL(
proper(
z0)),
PROPER(
z0)) by
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(nil)) → c20(ISNEPAL(ok(nil)), PROPER(nil))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(tt)) → c20(ISNEPAL(ok(tt)), PROPER(tt))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(nil)) → c20(ISNEPAL(ok(nil)), PROPER(nil))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(tt)) → c20(ISNEPAL(ok(tt)), PROPER(tt))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(nil)) → c20(ISNEPAL(ok(nil)), PROPER(nil))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(tt)) → c20(ISNEPAL(ok(tt)), PROPER(tt))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, TOP, PROPER
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c21, c22, c1, c7, c, c8, c2, c16, c16, c18, c18, c20
(33) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(nil)) → c3(PROPER(nil))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
PROPER(isNePal(tt)) → c3(PROPER(tt))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(nil)) → c3(PROPER(nil))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
PROPER(isNePal(tt)) → c3(PROPER(tt))
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, TOP, PROPER
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c21, c22, c1, c7, c, c8, c2, c16, c16, c18, c18, c20, c3
(35) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
PROPER(isNePal(nil)) → c3
PROPER(isNePal(tt)) → c3
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
PROPER(isNePal(nil)) → c3
PROPER(isNePal(tt)) → c3
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, TOP, PROPER
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c21, c22, c1, c7, c, c8, c2, c16, c16, c18, c18, c20, c3, c3
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c21(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(__(z0, z1))) → c21(TOP(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
TOP(mark(nil)) → c21(TOP(ok(nil)), PROPER(nil))
TOP(mark(and(z0, z1))) → c21(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c21(TOP(ok(tt)), PROPER(tt))
TOP(mark(isNePal(z0))) → c21(TOP(isNePal(proper(z0))), PROPER(isNePal(z0)))
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
PROPER(isNePal(nil)) → c3
PROPER(isNePal(tt)) → c3
TOP(mark(__(z0, z1))) → c21(TOP(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
TOP(mark(nil)) → c21(TOP(ok(nil)), PROPER(nil))
TOP(mark(and(z0, z1))) → c21(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c21(TOP(ok(tt)), PROPER(tt))
TOP(mark(isNePal(z0))) → c21(TOP(isNePal(proper(z0))), PROPER(isNePal(z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
PROPER(isNePal(nil)) → c3
PROPER(isNePal(tt)) → c3
K tuples:
TOP(mark(z0)) → c21(TOP(proper(z0)), PROPER(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, TOP, PROPER
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c22, c1, c7, c, c8, c2, c16, c16, c18, c18, c20, c3, c3, c21
(39) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 62 dangling nodes:
PROPER(isNePal(tt)) → c3
PROPER(isNePal(nil)) → c3
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
TOP(mark(__(z0, z1))) → c21(TOP(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
TOP(mark(nil)) → c21(TOP(ok(nil)), PROPER(nil))
TOP(mark(and(z0, z1))) → c21(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(tt)) → c21(TOP(ok(tt)), PROPER(tt))
TOP(mark(isNePal(z0))) → c21(TOP(isNePal(proper(z0))), PROPER(isNePal(z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
K tuples:none
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, TOP, PROPER
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c22, c1, c7, c, c8, c2, c16, c16, c18, c18, c20, c3, c21
(41) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
TOP(mark(__(z0, z1))) → c21(TOP(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
TOP(mark(and(z0, z1))) → c21(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(isNePal(z0))) → c21(TOP(isNePal(proper(z0))), PROPER(isNePal(z0)))
TOP(mark(nil)) → c21(TOP(ok(nil)))
TOP(mark(tt)) → c21(TOP(ok(tt)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(ok(z0)) → c22(TOP(active(z0)), ACTIVE(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
K tuples:none
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, TOP, PROPER
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c22, c1, c7, c, c8, c2, c16, c16, c18, c18, c20, c3, c21, c21
(43) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c22(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(__(__(z0, z1), z2))) → c22(TOP(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
TOP(ok(__(z0, nil))) → c22(TOP(mark(z0)), ACTIVE(__(z0, nil)))
TOP(ok(__(nil, z0))) → c22(TOP(mark(z0)), ACTIVE(__(nil, z0)))
TOP(ok(and(tt, z0))) → c22(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(isNePal(__(z0, __(z1, z0))))) → c22(TOP(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
TOP(ok(__(z0, z1))) → c22(TOP(__(active(z0), z1)), ACTIVE(__(z0, z1)))
TOP(ok(__(z0, z1))) → c22(TOP(__(z0, active(z1))), ACTIVE(__(z0, z1)))
TOP(ok(and(z0, z1))) → c22(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(isNePal(z0))) → c22(TOP(isNePal(active(z0))), ACTIVE(isNePal(z0)))
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
TOP(mark(__(z0, z1))) → c21(TOP(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
TOP(mark(and(z0, z1))) → c21(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(isNePal(z0))) → c21(TOP(isNePal(proper(z0))), PROPER(isNePal(z0)))
TOP(mark(nil)) → c21(TOP(ok(nil)))
TOP(mark(tt)) → c21(TOP(ok(tt)))
TOP(ok(__(__(z0, z1), z2))) → c22(TOP(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
TOP(ok(__(z0, nil))) → c22(TOP(mark(z0)), ACTIVE(__(z0, nil)))
TOP(ok(__(nil, z0))) → c22(TOP(mark(z0)), ACTIVE(__(nil, z0)))
TOP(ok(and(tt, z0))) → c22(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(isNePal(__(z0, __(z1, z0))))) → c22(TOP(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
TOP(ok(__(z0, z1))) → c22(TOP(__(active(z0), z1)), ACTIVE(__(z0, z1)))
TOP(ok(__(z0, z1))) → c22(TOP(__(z0, active(z1))), ACTIVE(__(z0, z1)))
TOP(ok(and(z0, z1))) → c22(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(isNePal(z0))) → c22(TOP(isNePal(active(z0))), ACTIVE(isNePal(z0)))
S tuples:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
TOP(ok(__(__(z0, z1), z2))) → c22(TOP(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
TOP(ok(__(z0, nil))) → c22(TOP(mark(z0)), ACTIVE(__(z0, nil)))
TOP(ok(__(nil, z0))) → c22(TOP(mark(z0)), ACTIVE(__(nil, z0)))
TOP(ok(and(tt, z0))) → c22(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(isNePal(__(z0, __(z1, z0))))) → c22(TOP(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
TOP(ok(__(z0, z1))) → c22(TOP(__(active(z0), z1)), ACTIVE(__(z0, z1)))
TOP(ok(__(z0, z1))) → c22(TOP(__(z0, active(z1))), ACTIVE(__(z0, z1)))
TOP(ok(and(z0, z1))) → c22(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(isNePal(z0))) → c22(TOP(isNePal(active(z0))), ACTIVE(isNePal(z0)))
K tuples:none
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
ACTIVE, __', AND, ISNEPAL, PROPER, TOP
Compound Symbols:
c5, c6, c9, c10, c11, c12, c13, c14, c15, c1, c7, c, c8, c2, c16, c16, c18, c18, c20, c3, c21, c21, c22
(45) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(__(z0, z1)) → c5(__'(active(z0), z1), ACTIVE(z0))
ACTIVE(__(z0, z1)) → c6(__'(z0, active(z1)), ACTIVE(z1))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z0, __(z1, z2)))
ACTIVE(__(__(z0, z1), z2)) → c1(__'(z1, z2))
ACTIVE(and(__(__(z0, z1), z2), x1)) → c7(AND(mark(__(z0, __(z1, z2))), x1), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(and(__(z0, nil), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(z0, nil)))
ACTIVE(and(__(nil, z0), x1)) → c7(AND(mark(z0), x1), ACTIVE(__(nil, z0)))
ACTIVE(and(isNePal(__(z0, __(z1, z0))), x1)) → c7(AND(mark(tt), x1), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(active(z0), z1), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(__(z0, z1), x1)) → c7(AND(__(z0, active(z1)), x1), ACTIVE(__(z0, z1)))
ACTIVE(and(and(z0, z1), x1)) → c7(AND(and(active(z0), z1), x1), ACTIVE(and(z0, z1)))
ACTIVE(and(isNePal(z0), x1)) → c7(AND(isNePal(active(z0)), x1), ACTIVE(isNePal(z0)))
ACTIVE(and(and(tt, z0), x1)) → c(AND(mark(z0), x1))
ACTIVE(isNePal(__(__(z0, z1), z2))) → c8(ISNEPAL(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
ACTIVE(isNePal(__(z0, nil))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(z0, nil)))
ACTIVE(isNePal(__(nil, z0))) → c8(ISNEPAL(mark(z0)), ACTIVE(__(nil, z0)))
ACTIVE(isNePal(isNePal(__(z0, __(z1, z0))))) → c8(ISNEPAL(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(active(z0), z1)), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(__(z0, z1))) → c8(ISNEPAL(__(z0, active(z1))), ACTIVE(__(z0, z1)))
ACTIVE(isNePal(and(z0, z1))) → c8(ISNEPAL(and(active(z0), z1)), ACTIVE(and(z0, z1)))
ACTIVE(isNePal(isNePal(z0))) → c8(ISNEPAL(isNePal(active(z0))), ACTIVE(isNePal(z0)))
ACTIVE(isNePal(and(tt, z0))) → c2(ISNEPAL(mark(z0)))
PROPER(__(x0, __(z0, z1))) → c16(__'(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(__(x0, and(z0, z1))) → c16(__'(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(__(x0, isNePal(z0))) → c16(__'(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(__(__(z0, z1), x1)) → c16(__'(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(__(and(z0, z1), x1)) → c16(__'(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(__(isNePal(z0), x1)) → c16(__'(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(__(x0, nil)) → c16(__'(proper(x0), ok(nil)), PROPER(x0))
PROPER(__(x0, tt)) → c16(__'(proper(x0), ok(tt)), PROPER(x0))
PROPER(__(nil, x1)) → c16(__'(ok(nil), proper(x1)), PROPER(x1))
PROPER(__(tt, x1)) → c16(__'(ok(tt), proper(x1)), PROPER(x1))
PROPER(and(x0, __(z0, z1))) → c18(AND(proper(x0), __(proper(z0), proper(z1))), PROPER(x0), PROPER(__(z0, z1)))
PROPER(and(x0, and(z0, z1))) → c18(AND(proper(x0), and(proper(z0), proper(z1))), PROPER(x0), PROPER(and(z0, z1)))
PROPER(and(x0, isNePal(z0))) → c18(AND(proper(x0), isNePal(proper(z0))), PROPER(x0), PROPER(isNePal(z0)))
PROPER(and(__(z0, z1), x1)) → c18(AND(__(proper(z0), proper(z1)), proper(x1)), PROPER(__(z0, z1)), PROPER(x1))
PROPER(and(and(z0, z1), x1)) → c18(AND(and(proper(z0), proper(z1)), proper(x1)), PROPER(and(z0, z1)), PROPER(x1))
PROPER(and(isNePal(z0), x1)) → c18(AND(isNePal(proper(z0)), proper(x1)), PROPER(isNePal(z0)), PROPER(x1))
PROPER(and(x0, nil)) → c18(AND(proper(x0), ok(nil)), PROPER(x0))
PROPER(and(x0, tt)) → c18(AND(proper(x0), ok(tt)), PROPER(x0))
PROPER(and(nil, x1)) → c18(AND(ok(nil), proper(x1)), PROPER(x1))
PROPER(and(tt, x1)) → c18(AND(ok(tt), proper(x1)), PROPER(x1))
PROPER(isNePal(__(z0, z1))) → c20(ISNEPAL(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
PROPER(isNePal(and(z0, z1))) → c20(ISNEPAL(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
PROPER(isNePal(isNePal(z0))) → c20(ISNEPAL(isNePal(proper(z0))), PROPER(isNePal(z0)))
PROPER(isNePal(nil)) → c3(ISNEPAL(ok(nil)))
PROPER(isNePal(tt)) → c3(ISNEPAL(ok(tt)))
TOP(mark(__(z0, z1))) → c21(TOP(__(proper(z0), proper(z1))), PROPER(__(z0, z1)))
TOP(mark(and(z0, z1))) → c21(TOP(and(proper(z0), proper(z1))), PROPER(and(z0, z1)))
TOP(mark(isNePal(z0))) → c21(TOP(isNePal(proper(z0))), PROPER(isNePal(z0)))
TOP(ok(__(__(z0, z1), z2))) → c22(TOP(mark(__(z0, __(z1, z2)))), ACTIVE(__(__(z0, z1), z2)))
TOP(ok(__(z0, nil))) → c22(TOP(mark(z0)), ACTIVE(__(z0, nil)))
TOP(ok(__(nil, z0))) → c22(TOP(mark(z0)), ACTIVE(__(nil, z0)))
TOP(ok(and(tt, z0))) → c22(TOP(mark(z0)), ACTIVE(and(tt, z0)))
TOP(ok(isNePal(__(z0, __(z1, z0))))) → c22(TOP(mark(tt)), ACTIVE(isNePal(__(z0, __(z1, z0)))))
TOP(ok(__(z0, z1))) → c22(TOP(__(active(z0), z1)), ACTIVE(__(z0, z1)))
TOP(ok(__(z0, z1))) → c22(TOP(__(z0, active(z1))), ACTIVE(__(z0, z1)))
TOP(ok(and(z0, z1))) → c22(TOP(and(active(z0), z1)), ACTIVE(and(z0, z1)))
TOP(ok(isNePal(z0))) → c22(TOP(isNePal(active(z0))), ACTIVE(isNePal(z0)))
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
TOP(mark(nil)) → c21(TOP(ok(nil)))
TOP(mark(tt)) → c21(TOP(ok(tt)))
S tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
K tuples:none
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
__', AND, ISNEPAL, TOP
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15, c21
(47) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 9 dangling nodes:
TOP(mark(nil)) → c21(TOP(ok(nil)))
TOP(mark(tt)) → c21(TOP(ok(tt)))
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
S tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
K tuples:none
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
__', AND, ISNEPAL
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15
(49) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [3]x1
POL(ISNEPAL(x1)) = [5]x1
POL(__'(x1, x2)) = [4]x1 + [4]x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [5] + x1
POL(ok(x1)) = [5] + x1
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
S tuples:
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
K tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
__', AND, ISNEPAL
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15
(51) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
We considered the (Usable) Rules:none
And the Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x1
POL(ISNEPAL(x1)) = x1
POL(__'(x1, x2)) = [2]x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [2] + x1
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
S tuples:
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
K tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
__', AND, ISNEPAL
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15
(53) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
AND(mark(z0), z1) → c12(AND(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = x1 + [5]x2
POL(ISNEPAL(x1)) = 0
POL(__'(x1, x2)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = [3] + x1
POL(ok(x1)) = [2] + x1
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
S tuples:
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
K tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
AND(mark(z0), z1) → c12(AND(z0, z1))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
__', AND, ISNEPAL
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15
(55) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
We considered the (Usable) Rules:none
And the Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [4]x1
POL(ISNEPAL(x1)) = [2]x1
POL(__'(x1, x2)) = 0
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [2] + x1
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
S tuples:
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
K tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
AND(mark(z0), z1) → c12(AND(z0, z1))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
__', AND, ISNEPAL
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15
(57) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(AND(x1, x2)) = [4]x1
POL(ISNEPAL(x1)) = 0
POL(__'(x1, x2)) = [2]x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c12(x1)) = x1
POL(c13(x1)) = x1
POL(c14(x1)) = x1
POL(c15(x1)) = x1
POL(c9(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(__(__(z0, z1), z2)) → mark(__(z0, __(z1, z2)))
active(__(z0, nil)) → mark(z0)
active(__(nil, z0)) → mark(z0)
active(and(tt, z0)) → mark(z0)
active(isNePal(__(z0, __(z1, z0)))) → mark(tt)
active(__(z0, z1)) → __(active(z0), z1)
active(__(z0, z1)) → __(z0, active(z1))
active(and(z0, z1)) → and(active(z0), z1)
active(isNePal(z0)) → isNePal(active(z0))
__(mark(z0), z1) → mark(__(z0, z1))
__(z0, mark(z1)) → mark(__(z0, z1))
__(ok(z0), ok(z1)) → ok(__(z0, z1))
and(mark(z0), z1) → mark(and(z0, z1))
and(ok(z0), ok(z1)) → ok(and(z0, z1))
isNePal(mark(z0)) → mark(isNePal(z0))
isNePal(ok(z0)) → ok(isNePal(z0))
proper(__(z0, z1)) → __(proper(z0), proper(z1))
proper(nil) → ok(nil)
proper(and(z0, z1)) → and(proper(z0), proper(z1))
proper(tt) → ok(tt)
proper(isNePal(z0)) → isNePal(proper(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
AND(mark(z0), z1) → c12(AND(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
S tuples:none
K tuples:
__'(mark(z0), z1) → c9(__'(z0, z1))
__'(z0, mark(z1)) → c10(__'(z0, z1))
AND(ok(z0), ok(z1)) → c13(AND(z0, z1))
ISNEPAL(mark(z0)) → c14(ISNEPAL(z0))
AND(mark(z0), z1) → c12(AND(z0, z1))
ISNEPAL(ok(z0)) → c15(ISNEPAL(z0))
__'(ok(z0), ok(z1)) → c11(__'(z0, z1))
Defined Rule Symbols:
active, __, and, isNePal, proper, top
Defined Pair Symbols:
__', AND, ISNEPAL
Compound Symbols:
c9, c10, c11, c12, c13, c14, c15
(59) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(60) BOUNDS(O(1), O(1))